Vector Spaces(向量空间)

Groups(群)

Consider a set \(\mathcal{G}\) and an operation \(\otimes: \mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G}\) defined on \(\mathcal{G}\). Then \(G:=(\mathcal{G}, \otimes)\) is called a group if the following hold:
1. Closure of \(\mathcal{G}\) under \(\otimes: \forall x, y \in \mathcal{G}: x \otimes y \in \mathcal{G}\)
2. Associativity: \(\forall x, y, z \in \mathcal{G}:(x \otimes y) \otimes z=x \otimes(y \otimes z)\)
3. Neutral element: \(\exists e \in \mathcal{G} \forall x \in \mathcal{G}: x \otimes e=x\) and \(e \otimes x=x\)
4. Inverse element: \(\forall x \in \mathcal{G} \exists y \in \mathcal{G}: x \otimes y=e\) and \(y \otimes x=e\), where \(e\) is the neutral element. We often write \(x^{-1}\) to denote the inverse element of \(x\).