离散数学
Mathematical Statements
Atomic Statements and Molecular Statements
如果一个句子不能被分割成更小的声明,那就是atmoic的否则就是molecular的。
Example:
atomic的
1. Telephone numbers in the USA have 10 digits.
2. The moon is made of chees.
3. 42 is a perfect square.
4. Every even number greather than 2 can be expressed as the sum of two
primes.
molecular的
Telephone numbers in the USA have 10 digits and 42 is a perfect square.
### Logical Connectives:
symbol | read | meaning |
---|---|---|
∧ | and | conjunction |
∨ | or | disjunction |
→ | if..then | implication or conditional |
↔︎ | if and only if | biconditional |
¬ | not | negation |
Notice
- 在implication的语句中,只有if部分是真then部分是假时整个statement
才是 false的
- Converse是指P→Q 和 Q→P的关系, 一个implication的converse是否为真与original implication 无关。
- Contrapositive指的是 P→Q 和 ¬Q→¬P的关系。 一个implication的contraspositive和original implication的逻辑是相同的,要么both为真要不both为假
Sets(集合)
Set 就是一个无序(unordered)的对象集合。 Example:
\[A=\{1,2,3\}\] 读作“A is the set
containing the elements 1,2 and 3"使用大括号(curly
braces)去enclose 这些 element。
\[a \in \{a,b,c\}\] The symbol \(\in\) is read “is in” or “is an element
of.” 意思是a是这个集合中的一个元素(element)。
Special symbol
Symbol | Meaning |
---|---|
\(\emptyset\) | The empty set is the set which contains no elements. |
\(\mathcal{U}\) | The universe set is the sest of all elements. |
\(\mathbb{N}\) | The set of natural numbers. That is, \(\mathcal{N}=\{0,1,2,3...\}\) |
\(\mathbb{Z}\) | The set of integers. That is, \(\mathcal{Z}=\{...-3,-2,-1,0,1,2,3...\}\) |
\(\mathbb{Q}\) | The set of rational numbers. |
\(\mathbb{R}\) | The set of real numbers. |
\(\mathcal{p}(A)\) | The poser set of any set A is the set of all subsets of A |
Function(函数)
All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.
Comment